

SNMPv2

SNMPv3

Soon Soon

Learning TCP / IP headers

Page	Topic/Header	with www.flashcardguy.ch
2	802.1	
3	Ethernet II	
4	ARP	
5	IP	
6	ICMP	
7	UDP	
8	ТСР	IP internal Routes TLV
9	RIPv1	22 Bits 1 1 1 16 BIT 16 BIT 1
10	RIPv2	Type = 0x0002 Length
11	RIP authentication	
12	EIGRP	Next nop 32 Sum of delay in units of 10 microseconds 24 bt II GRP field has 256 multiplik
13	EIGRP TLVs	DELAY 32
14-25	OSPFv2	BANDWITH 32
25-end	OSPFv3	MTU HOP COUNT
Soon	BGPv4	
Soon	LDP (MPLS)	Between 0x01 and 0xFF, where 0xFF indicates 100 percent reliable link
Soon	RSVP	on twe impute exponential weighted PREFIX LENGTH 24 8 (* special field used for padding, is depending on prefix)
Soon	IGMPv1	Between 0x01 and 0xFF, where 0x01 indicated minimally loaded link
Soon	IGMPv2	Specifies network mask bits
Soon	IGMPv3	
Soon	CGMP	
Soon	PIMv2	
Soon	MSDP	
Soon	Syslog	
Soon	SNMPv1	

802.2

IEEE 802.2 / 802.3 (RFC 1042)

Ethernet II

IEEE 802.2 / 802.3 (RFC 1042)

Number	Hardware Type
1	Ethernet
3	X.25
4	Proteon ProNET Token Ring
6	IEEE 802 Networks
7	ARCnet
11	Apple LocalTalk
14	SMDS
15	Frame Relay
16	ATM
17	HDLC
18	Fibre Channel
19	ATM
20	Serial Link

Protocol Type:

0x0800 IPv4

Operation

ARP request ARP reply Reverse ARP request Reverse ARP reply Inverse ARP request Inverse ARP reply

Options:	
Loose source routing	Pac
Strict source routing	Pac
Record route	eacl field
Timestamp	Sim time

cket must pass through that series of IP addresses cket must pass through exactly that list in order listed ch passed through router records its ip address into that

nilar to Record route, but router enters an additional estamp

			-			Bits
					15	16
				16 I	BIT	16 BIT-
			•	Type 8	Code 8	Checksum 16
Туре	Code	Name			Variabl Depending or	e fields n ICMP Type
0	0	ECHO REPLY				
3	-	DESTINATION UNREACHABLE				
3	0	Network unreachable				
3	1	Host unreachable				
3	2	Protocol unreachable				
3	3	Port unreachable				
3	4	Fragmentation Needed and don't tragment flag is set				
3	5	Source route failed				
3	6	Destination Network unknown				
3	/	Destination Host unknown				
3	8	Source Host Isolated				
2	9	Destination Network administratively prohibitated				
3	10	Destination Notwork uproachable for type of convice				
	0	SOURCE OUENCH (deprecated)				
5	-	REDIRECT				
5	0	Redirect Datagram for the Network (or Subnet)				
5	1	Redirect Datagram for the Host				
5	2	Redirect Datagram for the Network and Type of Service				
5	3	Redirect Datagram for the Host and Type of Service				
6	0	ALTERNATE HOST ADDRESS				
8	0	ECHO				
9	0	ROUTER ADVERTISEMENT				
10	0	ROUTER SELECTION				
11	-	TIME EXCEEDED				
11	0	Time to Live Exceeded in Transit				
11	1	Fragment Reassembly Time Exceeded				
12	-	PARAMETER PROBLEM				
12	0	Pointer Indicates the error				
12	1	Missing a Required option				
12	2	Bad Length				
13	0					
14	0					
15	U					
10	U					
10	0	Address mask request (near-obsolete)				
30	-	TRACEROUTE				

8 bytes 64 bit

20 bytes 160 bit

Maximum Segment Size MSS

Padding if required to fill the the multiple of 32 bits of the packet

RIPv1

RIPv2

Field used by the administrator to tag external routes, or to ensure the RIP redistributed routes are not being fed back into the RIP process

(It was suggested to contain the 16 bit autonomous system number ASN)

Can be: Host route Subnet Major Network

Supports VLSM, variable-length Subnet Masking

Within same subnet, if the router advertises another router as best path it will set his IP address.

If the sending router is metrically closer it will set the IP address field to 0.0.0.0 Indicating itself as best

Metric between 1 – 16 16 = Inacessible

RIP authentication

- Plain Text Passwords - MD5 Checksum

Field used by the administrator to tag external routes, or to ensure the RIP redistributed routes are not being fed back into the RIP process

(It was suggested to contain the 16 bit autonomous system number ASN)

Can be: Host route Subnet Major Network

Supports VLSM, variable-length Subnet Masking

Within same subnet, if the router advertises another router as best path it will set his IP address.

If the sending router is metrically closer it will set the IP address field to 0.0.0.0 Indicating itself as best

Metric between 1 – 16 16 = Inacessible

link

IP internal Routes TLV

IP external Routes TLV

EIGRP

"IP Address" or rather Router-ID of the router that redistributed the external route into EIGRP!

ASN of the router originating this route

May be used to carry a tag set by a route map

Field used when redistributing with IGRP, to track the IGRP metric

0x00000001 indicates right-most bit = Init, route entries are first in a new neighbor relationship

0x00000002 Conditional Receive bit, used in Reliable Multicasting algorythm.

Sum of delay in units of 10 microseconds 24 bit IGRP field has 256 multiplier

Area Type	1+2	3	4	5	7
Backbone	yes	yes	yes	yes	yes
Non-Backbone Non-stub	yes	yes	yes	yes	yes
Stub	yes	yes	no	no	no
Totally Stubby	yes	no*	no	no	no
Not so stubby	yes	yes	yes	no	no

Number

0 1-3

4

5

6

6

8

9 10-14

15

If Authentication type is set to 2:

0x0000	Key ID	Authentication
16	8	Data Length
Cryptographic S	equence Number 32	

OSPFv2 LSA Types

OSPFv2 LSA Header

Type Code	Description Hello Database Description Link State Request Link State Update
ł	Link State Opdate
5	Link State Acknowledgement

If Authentication type is set to 2:

OSPFv2 Database Description packet

AuType 0 2

Authententication Type Null (no authentication) Simple (clear text) Password Authentication Cryptographic (MD5) Checksum

unused

I-Bit, initial bit = 1 only within the initial packet.

Subsequent packets have the I-Bit set to 0

M-Bit, More bit = 1, indicates that this packet is not the last.

The last DD packet sets the M-Bit to 0.

MS-Bit, Master/Slave = 1 indicates it's the sending station is the master.

Slave sets MS-Bit = 0

Sequence Number is set by the Master

E-bit = 1 in all External LSA's and in all LSA's originated int the

This bit indicates capability of sending/receiving Type 5 LSA's.

MC = 1 if router is capable of forwarding IP multicast packets.

Tells the ABR of a not-so-stubby-area to translate type 7 LSA's.

OSPFv2 Link state request

OSPFv2 Link state update

OSPFv2 Link State Acknowledgement packet

OSPFv2 Network LSA

SPF)

OSPFv2 Network ASBR summary

LSA TypesType CodeDescription1Router LSA2Network LSA3Network Summary LSA4ASBR Summary LSA5AS External LSA6Group Membership LSA (Multicast, MOSPF)7NSSA External LSA8External Attributes LSA9Opaque LSA (link-local scope) IPv610Opaque LSA (AS scope) IPv611Opaque LSA (AS scope) IPv6

Cost of the route

Cisco supports only TOS = 0

OSPFv2

IP Header

(protocol 89)

Specific Data

OSPFv2

OSPFv3 Packet Header

Instance ID allows several instances to be run on the same interface. Has local significants only

OSPFv3 Hello Packet

OSPFv3 **Database Description Packet**

OSPFv3 **LSA Header**

Inter-Area Prefix LSA Inter-Area Router LSA AS-External-LSA Group Membership LSA Type-7 LSA Intra-Area Prefix LSA

OSPFv3 **Router LSA**

LSA Function Code

LS Type	Name
0x2001	Router LSA
0x2002	Network LSA
0x2003	Inter-Area Prefix LSA
0x2004	Inter-Area Router LSA
0x2005	AS-External-LSA
0x2006	Group Membership LSA
0x2007	Type-7 LSA
0x2008	Link LSA
0x2009	Intra-Area Prefix LSA

Describes the originating router and its links

Prefix information is carried in the intra-area

OSPFv3 Network LSA

LS Type	Name
0x2001	Router LSA
0x2002	Network LSA
0x2003	Inter-Area Prefix LSA
0x2004	Inter-Area Router LSA
0x2005	AS-External-LSA
0x2006	Group Membership LSA
0x2007	Type-7 LSA
0x2008	Link LSA
0x2009	Intra-Area Prefix LSA

Originated by the DR of the segment

ABR originates a separate inter-area prefix Isa for each IPv6 prefix that must be advertised into an area

An ABR can also originate an Inter-Area default route into a stub area.

OSPFv3 inter-area prefix LSA

Name

Router LSA Network LSA Inter-Area Prefix LSA Inter-Area Router LSA AS-External-LSA Group Membership LSA Type-7 LSA Link LSA Intra-Area Prefix LSA

OSPFv3 **Inter-area router LSA**

Router LSA Network LSA Inter-Area Prefix LSA Inter-Area Router LSA AS-External-LSA Group Membership LSA Type-7 LSA Intra-Area Prefix LSA

OSPFv3 **AS External LSA**

Router LSA Network LSA Inter-Area Prefix LSA Inter-Area Router LSA AS-External-LSA Group Membership LSA Type-7 LSA Intra-Area Prefix LSA

External route tag set to value by admin.

OSPFv3

	LS Type	Name
	0x2001	Router LSA
١	0x2002	Network LSA
	0x2003	Inter-Area Prefix LSA
	0x2004	Inter-Area Router LSA
	0x2005	AS-External-LSA
	0x2006	Group Membership LSA
	0x2007	Type-7 LSA
	0x2008	Link LSA
	0x2009	Intra-Area Prefix LSA

OSPFv3 Intra-area prefix LSA

уре	Name
001	Router LSA
02	Network LSA
003	Inter-Area Prefix LSA
04	Inter-Area Router LSA
005	AS-External-LSA
006	Group Membership LSA
007	Type-7 LSA
800	Link LSA
009	Intra-Area Prefix LSA

Then Referenced Link State ID is = 0 And the referenced advertising router is

If prefixes should be associated with a Reference Link State Type = 2

Referenced Link State ID is interface ID of the links DR and advertising router is the